Persistent natural acidification drives major distribution shifts in marine benthic ecosystems.
نویسندگان
چکیده
Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.
منابع مشابه
Ocean acidification: the other CO2 problem.
Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochem...
متن کاملMarine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors
Predicting the effects of anthropogenic CO2 emissions on coastal ecosystems requires an understanding of the responses of algae, since these are a vital functional component of shallow-water habitats. We investigated microphytobenthic assemblages on rock and sandy habitats along a shallow subtidal pCO2 gradient near volcanic seeps in the Mediterranean Sea. Field studies of natural pCO2 gradient...
متن کاملEffects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos
Ocean acidification has been predicted to reduce the ability of marine organisms to produce carbonate skeletons, threatening their long-term viability and severely impacting marine ecosystems. Corals, as ecosystem engineers, have been identified as particularly vulnerable and important. To determine the sensitivity of corals and allied taxa to long-term exposure to very low carbonate concentrat...
متن کاملImpacts of ocean acidification on marine fauna and ecosystem processes
Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the seawater chemistry of the world’s oceans with consequences for marine biota. Elevated partial pressure of CO2 (pCO2) is causing the calcium carbonate saturation horizon to shoal in many regions, particularly in high latitudes and regions that intersect with pronounced hypoxic zones. The ability of marine animals, most importan...
متن کاملPredicting the Response of Molluscs to the Impact of Ocean Acidification
Elevations in atmospheric carbon dioxide (CO2) are anticipated to acidify oceans because of fundamental changes in ocean chemistry created by CO2 absorption from the atmosphere. Over the next century, these elevated concentrations of atmospheric CO2 are expected to result in a reduction of the surface ocean waters from 8.1 to 7.7 units as well as a reduction in carbonate ion (CO32-) concentrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 282 1818 شماره
صفحات -
تاریخ انتشار 2015